perm filename CHECKE.AX[W76,JMC] blob
sn#199794 filedate 1976-01-31 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00002 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 AXIOM BOARD: BOARD = CROSS(SIDE,SIDE)
C00004 ENDMK
C⊗;
AXIOM BOARD: BOARD = CROSS(SIDE,SIDE);;
AXIOM MBOARD: MBOARD = BOARD\{<0,0>,<7,7>};;
AXIOM SIDE: SIDE = INTERVAL(0,7);;
DECLARE INDCONST BOARD MBOARD SIDE ε SET;
DECLARE PREDCONST DOMINOE(SET);
AXIOM DOMINOE: ∀A. (DOMINOE(A) ≡ ∃B C.(A={B,C} ∧ ADJACENT(B,C)));;
AXIOM COVER: ∀D.(COVER(D) ≡ ∀A.(AεD ⊃ DOMINOE(A)) ∧ DISJOINT(D) ∧
∀ B.(BεMBOARD ⊃ ∃A.(AεD ∧ BεA));;
AXIOM NEXT: ∀m n.(next(m,n) ≡ m = SUCC(n) ∨ n = SUCC(m));;
AXIOM ADJACENT: ∀a b.(ADJACENT(A,B) ≡ CAR(A)=CAR(B) ∧next(CDR(A),CDR(B)));;
DEFINE WHITE: ∀A.(WHITE(A) ≡ EVEN(CAR(A)+CDR(A))),
White = {x|xεBoard ∧ WHITE(x)};;
DEFINE BLACK: Black = Board \ White;;
DECLARE INDCONST ROWεSET;
DEFINE: ROW = {A|∃n a.(A = <n,a> ∧ nεSIDE ∧ a={b|bεBOARD ∧ CDR(b) = n})};;
AXIOM LEMMA:
card(SIDE) = 8,
EVEN(8),
∀x y.(xεBOARD ∧ yεBOARD ∧ ADJACENT(x,y) ⊃ WHITE(x) ≡ ¬WHITE(y)),
∀A.(DOMINOE(A) ⊃ card(A∩White) = 1),
∀A.(DOMINOE(A) ⊃ card(A∩Black) = 1),
∀n.(nεSIDE ⊃ card(CROSS({n},SIDE)∩White)=4),
∀n.(nεSIDE ⊃ card(apply(ROW,n))=8 ∧ card(apply(ROW,n)∩White)=4),